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Abstract
Under some conditions, the expected numbers of zero-crossings
observed in a finite section of a process with a mixed spectrum
and in finite sections of its filtered versions, determine tha

frequencies in the discrete spectrum regardless of the magnitude

of the "noise" component.
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e gog Spectral Analysis of an Almost Periodic Random Sequence in
’\'. olse '

i
.f3 ) 1. Introduction
§§§ . Consider a stationary random sequence (Zt), t = 0,£1,22,...,
Qg given by the equation
g e
gf zt ;g;(AJ cos ojt + BJ sin wjt} + gt
0w

’ where the amplitudes AJ,BJ, j=1,...,p are random variables and
i; tt is a random colored noise independent of the AJ,Bj. The
;: problem addressed in this paper is to determine p and wl,...,op
;# from expected zero-crossing counts regardless of the magnitude of
fgf the noise term !t' This can be done under some fairly general
T | conditions by considering sequences of expected zero-crossing
? counts obtained by repeated filtering of (Zt).

¢ Because zero-crossings portray the oscillation in (zt) the

' problem is tantamount to determining p and the w's of extreme-
:; ly weak signals buried in noise from the oscillation of the process
f% and its filtered versions. The general message of the present work
ﬁ is that this is indeed possible.
*? More precisely, we shall be dealing with the so called higher
3\ order crossings (HOC). Higher order crossings are zero-crossing
3% counts observed in a process and in its linearly filtered versions.
! The filtering operation may consist of a single operation applied
%g once or applied repeatedly or it may consist of a succession of

j% different filters. In this regard, repeated differencing and re-
K peated summation play an important role. The shifts or changes in
4
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the spectral distribution resulting from the filtering operation
are captured very economically by the higher order crossings, a
fact that led to a methodology useful in discrete spectrum analysis
as reviewed in Kedem (1986). The present paper is a refinement of
the work reported there. Specifically we investigate the conver-
gence of sequences of expected HOC, as wel) as functions of expect-
ed HOC, to the 's under various conditions on the spectrum of
Ty

When (Zt) is Gaussian with mean zero, the oscillation
Gepicted by the expected HOC is equivalent to knowing the correla-
tion function. However, HOC have a somewhat more direct interpre-
tation in terms of the spectrum as can be seen from their spectral
representation that will be discussed below.

In the present paper, both (Zt) and (!t) are assumed to
be stationary and Gaussian. The first part of the paper stresses
aspects of filter design and direct convergence of HOC to discrete
frequencies, while in the second part, consisting of section ¢,
the convergence is achieved rather indirectly by certain functions
of HOC. The main results of this paper are Theorems 3.5 and 4.1
stated in sections 3.3 and 4, respectively. In Theorem 3.5 we
assume Et is white noise, p =1, and construct a seguence form
expected HOC that converges monotonically to w, regardless of
the signal to noise ratio (that is, the ratio of the standard devi-
ation of the almost periodic component to the standard deviation
of the noise). The discussion leading to this result points to

the difficulties that arise once noise is added to the almost

periodic harmonic component. The basic idea underlying section 4
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is the motion of Ao-intervalo. These intervals are instrumental
in determining bp. °1""'°p regardless of the type of noise and

its magnitude, provided its spectral density is square integrable.

1.1. The model and definition of HOC.

Let (xt) represent the almost periodic harmonic component

with p terms, p < o,
= + .
xt J§1(Aj cos ujt BJ sin ojt}

Withou: ios8s of generality assume

0 <CWwW_<C®_< ,,, <@ <7,
1 2

The (AJ).(BJ) are taken as ancorrelated normal random variables

such that

= 2 -~ = = 2
EA, = EB, . EAjAs = EB By = 5, 0

BAiBJ = 0 for all 1i,jJ.

We assume that (!t} is a stationary zero mean Gaussina process

with an absolutely continuous spectrum FZ and spectral density

f{(uw), -m < w s 7. For each ¢, zt has a normal distribution with
mean O and variance a:. It follows that
zt = xt + (t

is a stationary Gaussian process with a mixed spectrum whose spec-

tral distribution function can be espressed as a sum

Flw) = rx((.)) + P (w), - < s 7w,

g

where Fx is a right continuous step function with jumps of size

1,2 4~
503 at t uJ Y-, .p-
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Let # be the shift operator ?Zt = Zt_l. ‘Then repeated

differencing can be defined by the operator

n

n n n k
v zt s (1-8) zt = Z[k](-l) zt-k’
k=0

Similarly, repeated summation is defined by

n
n n n
vz, = (148)72Z, = Z[k]zt_k.
k=0
Let {Yt}, t =0,+1,..., be any stochastic process and let <1(°]

be the indicator function. Then the number of zero-crossings in

Y

1""’YN is given by
N N
D= 221[\’120] - 221[‘!120,?1_120] - l[leO] - x[Y"zO].
i=1 i=1

n N
The number of zero crossings in (V zt}t_1 is denoted by Dn+1
and the number of zero crossings in (Anzt}):=1 is denoted by
n+1D' Then Dn+1 and n+1D are examples of HOC. In general,
when the linear operation is a filter with transfer function H,
the notation DH is used to signify the HOC corresponding to H.

The problem is to determine p and wl,...,wp from expected

HOC such as (EDn), {EnD) and (EDH).

2. Some moment relations

The second order moments of vnzt, A“z can be expressed

t
quite compactly by introducing the following sequences. Define

n n

ao(n,e) = Z[?]z. bo(n,O) = Z[?] [121]“”(9)

j=0 J=0
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n
! I=k
n?:'u
A
|.":. n
M n n n
i oemer = Y %) [[J_m]com-m, . [J_k_l]co.um,e,]
*S I=k-1
;..;; . k = 1,-00'n+1-
ﬁ&
i Then
o)
Y n
Ea"z)? - Zak(n,O)R(k)
()
" k=0
!'”l n+1
o E(A"z A"z, ) = Zbk(n,O)R(k)
5‘ k=0
b
;{(g n
o "z )% = ) a (n.mIR(K)
: k=0
:3 n+l
> n n
_t: E(V ZtV Zt+1) = Zbk(n,n)R(k)
'lp k’o
;, ; where R(k) = Eztzt+k'
&
i Let p(k) = R(k)/R(0) be the correlation function of (Z).
J Then from Kedem (1986), the Gaussian assumption implies
é‘. n+l
KR "EDns1) _ k=0 ¥
s (2.1) cos | —j=7 = = ,
H T &, (n,m)o(k)
Y k=0
b
K . and
o
‘v""
i n+1b o N
0 (2.2) cos[ n ] =
B N-1 n
K
::::E: , kgoak(n.O)D(k)
el
i3
j‘l
6
o
"i"l
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' } Let

o mED ne
el 9 = cos 9 » cos .
o n N-1 )’ n " °9%(W-1

v, Then p(0) =1, p(1) = Dl = 1” and so (2.1) and (2.2) imply the
!

b ¥ .
;ﬂ: ' existence of a function pm(xl,xz,...,xm,O) such that

. ) p(m) = pm(”llpzlo--:”m;")

5 (2.3)

= pm(lv,zD,...,mD;O), m=1,...,n
UL The proof of this fact follows easily by solving (2.1), (2.2)

Rd recursively for p(k) starting from p(0) = 1, and noting that

{n,0) = 1.

_ _q D1
"’s”?‘} b, (mm) = (-7, b
L]

Thus

n
3 p(n+1) = (-1™1D (0 & (n,m) - by(n,m))eL(D, .. 0 5m)
X k=0

n
ES) _ i
{3; = :E:(n+19ak(n,0) - bk(n,O))pk(ID,..., D;0),
k=0
and therefore for each n, the sequences {(p(1).,p(2),....,p(n)},
bﬁl (EDI.ED2,...,EDn). and (Eln'EZD""'Ean} are equivalent.
L)
ﬁ:~ Lemma 2.1. For a zero mean stationary Gaussian process, the
o _—
segquences (EDJ),(EJD} and {p(n)) are equivalent.

ﬁﬁ.“ this equivalence relation shows the relevance of HOC in spec-

tral analysis. It should be noted that the correlation function

may be obtained from many different HOC sequences, not just those

obtained bty differencing and summation.

AL 4.vl,f',i!”‘..).nfl‘gh.J"’I S AL 3

(L S o AN S A A S A e T



r = 3. Filter design and convergence of sequences of expected HOC

f&: We examine the effect of several different filters on zero-
:0\:[
ﬁﬁ crossing counts when the process (Zt) consists of the harmonic

signal only and also when it consists of signal plus white noise.

‘ot That is, %, = ¢ where ({¢,} 1is white noise. 1In this case
shi t t t
D) "t' M 2
::Q. |: g €
b — -
iﬁﬁ flo) = 50, -0 <@ 5w,
¢ )
o 3.1. A complex filter.
W
{f‘ Define a process (Y.} by
::l:"
N ‘\ " N
) _ i6_,.n
Yt = (1+4e” 8) zt.
LR\
{Zﬁ Note that Yt depends on n and 6. The transfer function and
v.'. N
ég_ squared gain are given, respectively, by

o 1(6-1)

n
R H(1) = (1+e )
o 2 2n ,0-A
n -

2% 1B 1 = 4"cos™™(Z57).
ﬁ Obgserve that (Yt) is complex,
§,

4
" Y, =u, + 1iv
:'::, t t t
;) where
o
4 n
190 n
) =
.,a u, Z[k]cv.m(ke)zt_k
N k=0

n

e = n
Ve Z [k]sin(ke)zt_k.
i k=0
o : It follows that ElYtl2 and Re Eyt§t+1 can be written in two
Ai;. )
I equivalent forms as follows. First,
N
0
oV
¢:"‘

)
E:l: ‘ 8
o
@
R
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14 n

2
Ely,1? = I lH(l)lzde(l) + ] |n(1)12dr€(1)

- -N

na2 nw

= -;— i g[coszn[éw +coezn[i§—l]] ‘2:€ [ coszn[g-;-]dk

-7

and

w n
Re(EY, ¥, ) = Re{I e'illu(x)lzde(x) + [ e_illﬂ(l)lzdFC(A)}

w -n

p +w -w
Z g[ OSZn[O +coszn[f—2——1]] cos(wj)

=1

n

4“] coszn[ingcos(x)dx.

-

+
g' NQM u.

Second,

n n

ElYtlz = Euz + !v: = Z Z[?] [:]cos((k-J)O)R(k-J)

= Zak(n,O)R(k)
k=0

and

n n
Re(EY. ¥ . ) = Buu +EBvv, . = Z Z[‘J‘] [EJcos((k-J)O)R(k-j+1)
| j=0 k=0

n+1

- }E:bk(n,o)a(k).
k=0

From these relations and (2.3) we obtain

‘v' N ‘," Y N LA o -7'
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Proof. Since cos(x/2) 1s monotone decreasing in [0,n], the

SOMOURYE s i ARG S R ey
! oL Rt 8N800, A .'i,a'! I't’.»'! .. '*

n+l

) kgobk(n.e)ok(vl,...,Dk;u)
kg]oak(n.e)pk(vl, e Dpim)
n+l

) kZ;obk(n.e)pk(ID, o1y Di0)
ki__lloank(n,é')pk(lav, e D:0)

2
p o n
2 og[cosznfgggl]+coszn[9%21]]cos(wj) + —% J coszn[i%QJcos(l)dl
- 3=t -n

p 2
2 2n(6+w 2n{e—-w o n
Jglaj[cos [—5—1}+cos {—5—1]] + i I coszn[l'eJdl
-n

(3.1)

When (zt) is a purely harmonic process, (3.1) provides a way for

determining the wJ'a. By choosing an arbitrary € € [0,n], (3.1)

will converge to cos(wr) for o closest to 6 as n— o,

More precisely we have

Theorem 3.1. Assume of = 0, 6 € [0,n] and suppose

|@~w_|1 < min (IB-UJI, 2n-w ,-0).

r Jur 3
Then
Re EYth+1
3 — cos(or).
EIYtl

10
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.'
¢ condition of the theorem implies that
K.
Y - tw
" cc:s[e2 r] > Icos[f-z——i]l, ijwr.
@
f: The assertion now follows from the last expression in (3.1). 0
fls
- Since cos(x) is monotone in ([0,7], obtaining cos(wr] is
hY
equivalent to obtaining @, T = i,...,p. Important special cases
[}
ii occur for 6 = O0,m.
.1
’ Corollary 3.1. Assume 03 = 0. Then
14
7 nED
o LIS n— ®
> N-1 p’
cﬁ nE D
i w1 T 0 P
L
B,
N Proof. From (2.1), (2.2) and (3.1), as n—®,
~
:: n+1
( ~ kz;()bk(1'1,11);)k(1>1,...,!)k;n)
" Dhet = - cos(wp)
o Y a,(n.mp (D,,...,0, ;%)
o k=0 k k'71 k
L n+1
l) kgobk(nlo)pk(lplo-olkD;o)
v ne1® = “m — cos(@y),
= a, (n,0 9,...,,0:0
o kgo k( )Pk(1 ‘K )
f: and note that cos(x) 1is monotone for x € [0,n]. )
Ef Unfortunately, the method just outlined breaks down in the
iﬁ presence of noise. To realize the effect of noise define first
-'1 2!‘[6_‘,1
g cos —5
o f (A;0) = -1 < A s mw,
.{‘::.4 n n
s I cos?" [e—-—-—;w]dw
-n
Y
X 11
o
.
'l
"
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Then we have

Lemma 3.1. The sequence of probability densities (fn(l;e))

satisfies

n

J fn(l;e)cos(x)dk——ocos(e), 0s 0 s mw,
-

Proof. Suppose 0 < 6 < m. Then for every ¢ > 0O there exists a

& > 0 such that

aa inf lcos[iig]l > b = sup lcoa{lgg}l.
IA-0]<d IA-6|2¢
Therefore
2n
£ (r:0)a s 22 L 6 now.
n 26a2
IA6|z2¢

Similarly for 6 ==

0
i

inf lcos[l%EJl 2 de= sup lcos[&%z]l
n-8<|A|sm A <n—¢

so that again

2n
J f (A;m)dr s 2"d2 — 0, n—®,
n 26 ¢

|A ]| <m-¢

Since cos(A) is continuous and since fn(k;e) is for each n a

probability density function with parameter 6 it follows that
n

lim [ f (A;0)cos(L)dr = cos(0), 0 < 6 s m, 0
n
n--o -n

Theorem 3.2. Assume 03 > 0. Then for every 6 € [0,n]




|="- n+l

) 2] /J . ;

€ L PRI (Do Byim)
aﬁ ' n — CcO08(0), N—®
AT ra(né)p, (9,,...,0 ;7)
. k=0 Kk k"1 k
‘O,.
o~ ' and the same holds if the DJ are replaced by the JD, and n
e

. by O.
o«
ah Proof. When wj = 6 for some Jj, the claim follows by bounded
;% convergence from (3.1). Otherwise define
1
o
ey
4 W
::::u b’ = max |cos r——lz ]|
A 1s Jsp
ﬁ: and note that the method used in proving Lemma 3.1 yields
O,
) b (b’ ,2n
A - — 0, N ®,
® 2n(6 -1
* J_"cos [—f—]dl

Apply now Lemma 3.1 to the ratio of the two integrals in (3.1). O

Corollary 3.2. When 03 > 0,

1 n+1? 1 Py 71 R,
e
By or equivalently
J
f“ nE n+1D — 0 "EDn+1 —_ ®
o w1 % w1 T e
o
-'
?J Proof. The proof follwos from (2.1), (2.2). 8]
f} Corollary 3.3. ag = 0 if and only if for some 6 € [(O,n], 0 ¢
W54
.” 2 o0 ey
1A {‘"1 ("p)
N , n+1
) ;] /) LD
pE. k:_:obk(l'h.).f.’k(..l.. Dk,n)
® lim — — cos(9),
- N+ .
o kzz:oak(n’e)l?k(ﬂl,...,Dk,u)
o
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and the same holds if the " are replaced by the P, and =

, J J

i ’ by 0.

:

. 3.2. The Slutsky filter.

) For k,m,n = 0,1,2,..., put

\

f- Yik) - [(1-8)“‘(1+8)“]kzt, t = 0,t1,....

: Then {Yik)) is a real valued stationary Gaussian process with
s

o mean O. The transfer function of this linear operation is given
1)

' by

) Hk(l) < (l_e-il)km(1+e—1l)kn

)

$ with squared gain

K

.‘ |Hk(l)|2 = 2k(m+n)(1—cos l)km(1+coe l)kn.

The squared gain is symmetric and unimodal in (0,7n] with a peak

t occuring at

3 - -1{n-m

i‘ A c cos [m]

" (k)N

: Let D, denote the number of zero-crossings in (Y "'} ..
k+1

where m,n are fixed and are chosen in accordance with a prespeci-

q fied A
c

Results similar to those obtained in the previous discussion

N can be obtained in terms of the HOC (DH ), k=1,2,..., the dif-

) k

A

o ference being the fact that unlike the case treated earlier the
convergence to the wJ can be expressed directly in terms of

X expected HOC. This is readily seen from the equality

14
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k+1l
N-1

-n
" 2
[ im oni?arnn

-n

n -
mED [ e n|uk(x)lzdr(k)
cos }

02 n

¥ 02[(1-cosw )m(1+cosw )“]kcoaw — [(1-cool)n(1+coal)"]kcosldl
A 3 3 3T,

2
P ol w
) 03[(l-coswj)m(1+cosoj)n]k+_% I [(1-008l)n(1+cosx)n]kdx
J=1 0

(3.2)

Theorem 3.3. Assume af = 0 and suppose m,n are such that

(1-cos wr)m(1+cos wr)n > max ({1-cos @

Jur J

)®(14cos wj)n).

Then
nED

k— ®,

N-1 r’

Proof. From (3.2)

nED
He
c°'[‘ﬁ:i‘] —b cos(wr)

and cos(x) 1is monotone in (0,x]. 8]

Corollary 4.1. Assume of = 0 and suppose m,n are such that

lc is sufficiently close to w.. Then

nED

Hy
- — wr, k— o,

Proof. In (O,n] (1-cos A)m(1+coo k)n is unimodal with the peak

occuring at lc' 0

Thus by varying m,n so that lc lands at or near the w

3

we can detect all the frequencies provided the process is purely

15
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3 ” ' '

harmonic.

“k ’ Again, as in the previous case, in the presense of noise this

Ry procedure breaks down and the expected normalized HOC converge to
"!q Al

A
c

w.' Theorem 3.4. Assume 03 > 0. Then for m,n such that kc =
4

X cos_l((n—m)/(n+m)). we have

) "EDHk
W lim ——— = 1

N ks N-1 c’

i Proof. Define a sequence of probability density functions on

e loin]-

m n,k
R ¢k(l) - ﬁ[jl—cos A) (1+cos 1)] K =1,...

J [(1-cos 1)®(1+cos 1)"1¥ar
0

.jz Then for every £ > 0 4t is not difficult to see that
"‘“ J wk(k)-—.o, k— m,

e -2 _lze

‘o from which follows that

n
’a. (3.3) (A)cos(A)dr— cos(r ) = 22
b ' Pk ¢ mm
o 0

s Define now

e h(x) = (1-cos 1)™(1+cos 1)"

3

S : and without loss of generality assume O < \c < n. Consider two

AT cases. First, suppose W, = lc' Then obviously h(wj) < h(lc), J

b - r, an? (h(wj)/h(lc))k—qo, k—®, Also, for sufficiently
e

‘fi small & > O

‘o

' . A A" A

s R - . - < > Wyt Tt 0 AONURET IR
Y O Y] (e i Y e LHL 4N TR A I i S ORIt D
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4 f f
rok ! k k
Joh (A)dr Jn-xcpa h™(A)ar + ju-x s B (A)dr
0 s % = »" c
ho(x ) ho(d )
max(h (A _-6) b (A _+6)-n
1 + 26— 256, k—®

k
h (lc)
and let 66— 0. We have shown in fact that

:pk(wr)-—»ao, k— o,

nED
Hk+1
Therefore, from (3.2) cos -—ﬁ:T——-—+cos lc, k-—®, When wj ”

xc, for all 3}, then by a similar argument

nED

H

so that from (3.2) and (3.3) again cos[—ﬁ-_-‘litl]—»cos(xc). Thus
in general

uEDH

—T—_‘; -— lc. 0
From the last two theorems we have
Corollary 3.4. of » 0 if and only if for 1 _ ~ wy J=1,....p

"EDHk
) - lc' Kk— ®

3.3. The alpha filter and the case of a single frequency.

Although the results of the previous two subsections are

somewhat pessimistic when 03 > 0, the fast conclusion that the

addition of noise makes the detection of wl,...,wp from HOC

17




impossible is far from being true. Successful detection can be

ﬁk ' achieved even in the presence of appreciable noise, provided care-
:' fully designed filters are used in generating useful HOC sequences.
n'.

N

) A clue to this effect is furnished by Theorem 3.4. The theorem

‘\

! shows that in the presence of noise, the normalized expected HOC

™,

:} converge to Ac. The precise reason for this fact is that as

o

a1

o) k-—®, more and more spectral weight is given to Kc' rendering
N

r: it dominant. As a result the sequence nED, /(N-1), k= 1,2,...,
he k

' . ¢

e is attracted to lc and convergence occurs. When lc coincides
. with an wj the resulting sequence of expected normalized HOC

)

s

. will converge to it. This shows that by controlling and shifting
T

N -.'

‘vl the spectral mass we can force the sequence of normalized HOC to

A

= converge to desired fregquencies.

I

i{ More generally, from (2.1) we obtain the basic spectral repre-
f sentation for the expected number of zero-crossings (since @, > 0)
L n

2

2 nED, Jocos(w)dF(w)

..; (3.4) COS[T_T] = B

s [ ar(o)

iy 0

J

e'r

%* (See Kedem (1986) for a discussion and additional references con-
LA

4

}J‘ cerning this representation.) From this representation we see

D)

D)

- that nEDl/(N—l) is a weighted average of the spectral support.

Therefore nED1/(N-1) will change its location with shifts in the

;f spectral weight dF(w), and so this quantity can be "directed" to
L8

f admit values near or at discrete points in the spectral support.

iﬁ The point of this discussion will now be demonstrated in the
2; special case when p = 1, We will show that @, can be detected

\#

,):

'
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by a L rtain sequence of expected normalized HOC that converge to
@, regardless of the magnitude of the signal to noise ratio.

Let p =1,

zt = A cos(wlt) + B sln(olt) + Ct

where A,B are independent N(O.ai) random variables and inde-

pendent of the white noise (ct), £, ~ N(O,of). Define the

t
a-filter by

Y, = (l—a)Zt + a¥

¢ t=0,:1,...,

t-1"

and -1 < a s 1. The squared gain of this filter is given by

(1-a)?
1-2a cos w + a

|Ha(w)|2 = - < W s MW,

Let DH be the number of zero-crossings in Y1""
a

' ag € (-1,1) and let

n!DH
%3
scos____.’J-O,l'z'..,
j+1 N-1

Theorem 3.5. Set p = 1. Suppose the noise process tt =L, is

a

. white noise. Then as j—,

{ aj—acoo(ul)

or equivalently

regardless of the signal to noise ration o /nr

Proof. Observe that
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n

I 16, (0) %60 = o 22

] 1+

: 0

f and

' .

a [ cos(w) [H (@) 2%dw = an 122,
" a 1

L (0]

'

()

v Therefore, from (3.4)

f, n

N 2

mED, I cos(w) |H_(0)|dF(v)

' Qa

2 cos a -9

\ N-1 n 2

‘ [ 18 (o) 1%aF (o)

a
0

5

: n n

2 J cos(v) [H_ (o) | de(w) + j cos{w) IH (o) | dF (@)
\ _ 70 o

N - n

« [ 1 o 2ar () +j 1H, (@) 1 2aF, (o)
! 0 0

o (l-a)oi 03

o cos(w,) + — a
A 1-2a cos w1+02 1 1+a
. (3.5) = 3 2

\ (1-a)o o

N 1 + £

: 1-2a0 cos w1+a2 1+a

!

)

nEDH
g and we see that coa{——ﬁ:%—} is a weighted average of cos(wl)
%) and a. Suppose a, s cos(w,). Then
"D,

X a,

) Aq < cos[—iti—] H cos(wl)

' and

WED“ nEDH

. a a

, cos Of ¢ cos 1l ¢ cos(w )
: N-1 N-1
y 20

4
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o 1

( or more generally

!

'?

é Ag € @y s ... s Ags s cos(w, ).

ﬁ Thus {aj} is a monotone increasing and bounded sequence which
.
. ) .

w converges to a say. But then from (3.5) we have

"‘
- o2

:‘l £ *

i — (@ - cos(e,))

\5 ] lm

(3.6) a - cos(w, ) =

: 1 2 2

N (1-a )o1 g,

2 [ 2 L] + [

v 1 - 2a cos(wl) + a l+a

‘

2 .

A

ma Suppose a - cos(wl) #» 0. then dividing both sides of (3.6) by

®
. a - cos{w,) leads to
‘N 1
2

‘lﬂ OE

K\ 1 .

W) 1 = 3 +a < 1

2 2

py (1-a )o o

~ 1 + £

L % t2 E]

) 1 - 2a cos w, +a l+u

<

W]

B and hence to a contradiction. Therefore
Y v .

“- a = cos(wl)

"y

w or

TN nED

" .

¥ Ha -

K N-1 1

P

s When g > cos(wl), the sequence (aj) is monotone decreasing
i

i) and bounded and by the same argument converges to cos(wl) from
o above.

from the proof of this theorem we can see that any filter

13 with transfer function HO(M) which depends on a parameter 6 <
:3 (-1,1) can be used in the detection of ml. All that is needed
:; is that

L

':(

A.‘

.
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n n
J cos(w)lﬂo(w)lzdw = GJ lﬂe(w)lzdw.
(0] 0

When p = 2 we can prove in the same way that for large j,

nBDH /(N-1) admits values between and w,.

1 2
a
J
Theorem 3.6. Let p = 2 and choose an ao € (-1,1). Then regard-
less of the signal to noise ratio (0§+o§)1/2/o€,
aj—aa € [cos wz,cos wl]
or equivalently
nEDH
?3
N w € [wl,uzl.

Proocf. As before aj is monotone and bounded and thus converges

to a, where

2
1 1+a Jcos w
2

+02)+O§(1—2a cos w1+a )

03(1—2a cos @ +a2)cos W +o§(1—2a co8 w

2
o?(1—2a cos W

2

cOo8 w < a =

2

< CO8 W, . 0

3.4. Detection of periodicities by HOC.

The generalization of Theorem 3.5 to the case p 2 2 requires
more sophisticated filtering which we shall not pursue here. 1In
practice, the generalization takes a somewhat different route.
Since the normalized HOC tend to admit values near or at dominant
frequencies, the central idea is to evaluate the periodogram at
the normalized HOC. The combination of HOC and the periodogram in

this manner has been reviewed and discussed in Kedem (1986).
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4. A complete solution

Theorem 3.5 shows that in one special case it is possible to
determine a single frequency from HOC regardless of the signal to

noise ratio. 1In this section we give a general solution to the

problem of determining p, wl,...,wp in the presence of any

colored Gaussian noise (zt} with continuous density f(w). But
rather than using HOC directly we use functions of HOC. Generally
speaking, it is sometimes more beneficial to use functions of HOC
and 1n particular the correlations (p(k)} which by (2.3) are
functions of expected HOC. Thus, we will show that the oscillation
in (Zt) as depicted by the expected HOC, obtained by repeated

differencing, determines the discrete frequencies and their number.

Recall (2.3) and define

hN(l) E hN(l;Dl,...,DN_I)
N-1
-3/4 n .
= N [1+ZZ(1-ﬁ)pn(1>1,...,Dn,n)cos(nl)]
n=1}1
N-1
-3/4 n .
N [1+2:E:(1—i)pn(19,...,nD,O)cos(nl)].
n=1

We shall investigate the asymptotic behavior of (hu(l)} and show
that this sequence of functions of expected HOC determines p and
wl""'wp regardless of the signal to noise ratio where the noise
is any colored noise. This is done by showing that as N— o,

the sum represented by hN(l) vanishes for A » w_,, j =1,...,p.

b
but diverges otherwise. In this regard the key idea is the defi-

nition of an Ao—interval.

Definition 4.1. Let (gN(\)) be a sequence of continuous func-

23
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r
:

SO »
o -
E& tions on [0,m]. Let Ao be a positive number and IN (a,3) a
g& subinterval of [0,7]. We say that IN = (a,83) 1is an Ao—interval
s
&% of gN(l) if the following definitions are satisfied.
(a) gu(d) < Ay, A € I
!‘ = =
:_‘:. (b)  gyla) gy(8) A,
A -1/2
By (c) The Lebesgue measure of In> N .
!
{3' We will show that asymptotically, the number of Ao—intervals
i
;} of hy(i) is equal to p-1.
“‘
E; We start off with a lemma due to Wang (1983). The upper
o
* bound given here 1s an improvement over the one given there.
iﬁ Lemma 4.1. Let (¢¥(n), n=0,t1,...} be a real valued stationary
:&; Gaussian process with mean zero, and square integrable spectral
“P*
af
" density function f(A). Then for any a z 0 and k such that
i& k = 2a + 3/2 we have the inequality
-':::'
( B{sup lElZf(n)naeinl 2} (47 + /4'7:),/2 r (A)dr.
v A N
LS n=1
o
“? Proof. For every fixed 1
o4 ===
[N
) N-1
TN
I 'Z““’ deimt 2 Zt(m)m +2) r(mr(me1)n’ (me1)%o08 1 +
‘q% n=1 m=1 m=1
:‘c"
) + 22 (N)t(1)Ncos(N-1)1
b
T N-1 N-n
D.. !
N < 22 Zz(m):(mm)m"(nm)“cos(nm |
ab{ . n=0 m=1
i N-1 N-n

o s 2) | ) ¢(mt (n+n)o® (n+m)®

n=0 m=1

C

\“ (AN
" 4 ) f AV IV ] - HH Xk .\
|. .l,.‘ o 08 X XA "' ‘. D ' ‘O' .!.9 ... i "’ : .l.g‘ el W 3, " ."l’a' ’ ‘. ‘/ }' X }I o AR RAN



where R(n)

where EYn(m) = 0 and by the Gaussian assumption

with mean zero. Also, if we define

N-1 N-n

< 2) | ) [£(m)&(m+n)-R(n)]m" (n+m)% |+
n=0 m=1
N-1 N-n
(4.1) + ZZIZR(n)ma(mﬂx)al
n=0 m=1

1]

EZ (m)Z (m+n). Note that the last two expresssions in

the sequence of inequalities are independent of \. The first of

these terms can be simplified by introducing the lag-process

Yn(m) = £(m)¢(n+m) - R(n), m = 0,x1,...,

EY_(m)Y_(m+k) = EX (m)€ (m+n)f (m+k)Z (mtk+n) - R%(n)

R%(n) + R%(k) + R(n-k)R(n+k) - R%(n)

[}

R%(k) = R(n-k)R(n+k)

so that {Yn(m)) for each fixed lag n 1is wide-sense stationary

RYn(k) = EYn(m)Yn(m+k), k =0,+1,...,

then by Cauchy-Schwarz inequality and orthogonality of sines and

cosines
® ®
2 2
D irg 1 s YRR +RP (k)
k=-® n k=-~®

® n
= 2Z Rz(k) s 471J[ fz(l)dl.

k=-® -n

Therefore (Yn(m)) has a continuous spectral density fn(l),
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say, such that

n

(4.2) sup £ (1) s 4n J £2(0)dw.
A n
-n

uniformly in n. Going back to the first of the last two expres-

sions in (4.1) and by invoking in succession first Cauchy-Schwarz
inequality and then (4.2) we have
N-n

E| Z{: (m)& (m+n) -R(n)]m® (m+n)®
m=1

N-n N-n

a a a a, 2 1/2
= EIZYn(m)m (m+n) | < {EIZYn(m)m (m+n) |} }

m=1 m=1

n  N-n

1/2
[ IZm (m+n)Pel™ | 2¢ (l)dl}

-7 m=1

[}
—*

n n N-~n

1/2
{4nJ fz(k)dlj lZm (m+n)aeimll2dl}

-n - m=]

iA

n

1/2
{4nl fz(k)dl-2n-N-N2a-N2a}

-n

A

n
= onm //;I £2(x)ar-N20t1/2
-

For the last expression in (4.1) we have

N-1 N-n

N-1 N-
> 1D Rian® (men)®) < Zla(nuznm“(mm)“

n=0 m=1 n=0 m=}l

®

1/2
(4
Nl/z{ E R2(n)} N-N2* < //2nj £2(1)arn.N22*3/2
-

k=-o

26

~¢ 0¥,




ot

e

f'q Returning to (4.1) equipped with these new expressions which are
gt .

4 ) independent of 1, we see that

fo;'g,: N

St

ah E{supl :(n)naeinltz}

B A n=1

o2

A

n n
< 2,,.2,,/,4 £2(2)an. 2012 2'/2"J £2 (1 )dr . N23+3/2

::?',; - -n
)
e n
% = (4n + /‘4‘n),/2j £2(x)ar.N20*3/2 a
iy -n
o
+u Next we show that hN(l) tends to be inflated as N—® in small
rx neighborhoods of the wJ and vanishes elsewhere.
:Jﬁ Define the set 4 by
Al
;tl p
4= (e fom : N3 ooy < 2n-N"34y,
e Jal j
\"-
oo
‘gﬂ This set is made of [0,7] minus neighborhoods of size 2N_3/4
r‘l-‘
{ around the Wy
‘fﬁ
T -
.15 Theorem 4.1. Let Rz(k) Eztzt+k. Then
oL
e (a) for each fixed

5 )

a
N
[y
~
[-3

~ sup h. () >-——l———a
;t -, |s™ N anz(O)
e sl n
i
ae (b) For N sufficiently large such that
\‘n
iy 1.-3/4 1.-3/4 1
4 1, [ N /Bin(IN )] < 5
5y ? -3/4 7*
.3 2. for ol > 0, N < w1
= 3. for w_ < m, N34 s,
::l ~ p
:ﬂ% the inequality
"ﬂ; .
w3
A
Y 27
- b
)
i
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Ma A oad oae oad ae da g e o g v v

n
o§ + (4n+/t_1l)/2[

P
=1 n

1 2 -1/4
W sup hy(A) < 1575 £(1)an N
o rea N "z °’[ y ]
‘n
e holds.

.:s- . Proof.
E)

- N-2
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regardless of the signal to noise ratio.

The last three results show that
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